B-frame supported bimetallics. [($\left.\left.\mathrm{PMe}_{2} \mathrm{ph}\right)_{2} \mathrm{PtB}_{9} \mathrm{H}_{11} \mathrm{Ru}\left(\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]$ and $\left[\left(\mathrm{PMe}_{2} \mathrm{ph}\right)_{2} \mathrm{PtB}_{9} \mathrm{H}_{9} \mathrm{Ru}\left(\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right]$; an interesting pair of electron-deficient nido and closo geometries ${ }^{1}$

Young-hee Kim *, Paul A. Cooke, Robert Greatrex, John D. Kennedy, Mark Thornton-Pett
The School of Chemistry of the University of Leeds, Leeds LS2 9JT, England

Received 19 March 1997

Abstract

[7,7-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-9-\left(\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-7,9-\mathrm{PtRuB}_{9} \mathrm{H}_{11}$] has a formal closo Wadian cluster-electron count, but a nido geometry, whereas $\left[1-\left(\eta^{6}-{ }^{i s o} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-4,4-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-1-4-\mathrm{RuPtB}_{9} \mathrm{H}_{9}\right.$], which does have a closo geometry, has a formal sub-closo cluster electron count; both compounds are formed in the reaction between [6- $\left(\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$-nido-6 $\left.\mathrm{RuB}_{9} \mathrm{H}_{13}\right]$, KH and $\left[\mathrm{PtCl}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$. © 1998 Elsevier Science S.A.

Keywords: Nido and closo geometries; Electron count; Boron

1. Introduction

In contrast to the chain and ring structures that typify the carbon hydrides, boron hydride chemistry is based on polyhedral cage and cluster structures. The structures of many polyhedral boron-containing compounds and related cluster species are governed by Ken Wade's Rules [1,2] ${ }^{2}$ that relate cluster geometrical structural patterns $[4,5]^{3}$ to formal cluster-electron counts. These Rules have been exceptionally useful in the development of the area $[1,2,4-8,3,9]\left({ }^{1,2}\right) .{ }^{4}$ Exceptions to these Rules are important, because the delineation of any related series of exceptions should facilitate the recognition and the understanding of new patterns, and of any underlying chemical features that account for them, and pave the way for their logical and useful extension. Particularly interesting deviations can arise

[^0]when transition-element centres are also part of the boron-containing clusters [9]. For example, open nido or arachno geometries are sometimes observed when the formal cluster electron-count dictates closo [10-20], and closed cluster geometries can be observed when the formal cluster-electron count is sub-closo [20-23]. Sometimes the observed open and closed cluster geometries differ from the normal closo, nido, etc. associated with the classical Wade's Rules formalism [9,21-28] [29-31], and some of these that appear to fall into alternative structural patterns [9,30,31] have been labelled isocloso, isonido, etc. There are interesting discussions and tentative rationalisations about some of these anomalies in the literature [9,32-35]. However, although some specific individual deviations are reasonably defined and rationalised [36-38], there are no unequivocal general theoretical interpretations. It is therefore important to have comparative experimental findings for the development and assessment of theory. In this context we here present a preliminary report on two very closely related new anomalous eleven-vertex bimetallaborane cluster systems, represented by [7,7$\left.\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-9-\left(\eta^{6}{ }^{i s o} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-7,9-\mathrm{PtRuB}{ }_{9} \mathrm{H}_{11}\right]$ (compound 1) and [1- $\left(\eta^{6}-{ }^{6}{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-4,4-\left(\mathrm{PMe}_{2}-\right.$ $\mathrm{Ph})_{2}-1,4-\mathrm{RuPtB}_{9} \mathrm{H}_{9}$] (compound 2). These two examples differ only by two hydrogen atoms, and thereby
constitute a good comparative pair. Previous comparative work in this area has been limited largely to monometalla systems.

Reaction on a scale of $700 \mu \mathrm{~mol}$ between [6($\eta^{6}{ }^{\text {i }{ }^{\text {so }}} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}$)-nido-6- $\left.\mathrm{RuB}_{9} \mathrm{H}_{13}\right]$, KH and $\left[\mathrm{PtCI}_{2}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right]$ in THF at room temperature for 24 h , followed by chromatography (TLC, silica gel G, $100 \% \mathrm{CH}_{2} \mathrm{CI}_{2}$) reveals several coloured reaction products. Repeated chromatography has resulted in the ulti-
mate isolation and identification of two of these, yellow [7,7-($\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-9-\left(\eta^{6}{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-7,9-\mathrm{PtRuB}{ }_{9} \mathrm{H}_{11}$] (nido eleven-vertex numbering system; compound 1) $\left(R_{\mathrm{F}} \quad\right.$ ca. $\left.0.3 ; 8.9 \%\right)$ and green-purple $\left[1-\left(\eta^{6}-\right.\right.$ $\left.{ }^{\text {is }}{ }^{\mathrm{P}} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-4,4-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}$-1,4-RuPtB ${ }_{9} \mathrm{H}_{9}$] (closo eleven-vertex numbering system; compound 2) ($R_{\mathrm{F}} \mathrm{ca}$. $0.5 ; 8.3 \%$) as air-stable crystalline solids. Both have been characterised by single-crystal X-ray diffraction analysis, (Fig. 1) and NMR spectroscopy.

Fig. 1. ORTEP-type [39] drawings for [7,7-($\left.\left.\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-9-\left(\eta^{6}{ }^{\text {iso }}{ }^{\text {o }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-7,9-\mathrm{PtRu} \mathrm{B}_{9} \mathrm{H}_{11}\right]$ (compound 1, upper) and [1-($\left.\eta^{6}{ }_{-}{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ -$\left.4,4-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-1,4-\mathrm{RuPtB}_{9} \mathrm{H}_{9}\right]$ (compound 2, lower). Selected interatomic disances (\AA) for compound $\mathbf{1}$ are: from $\mathrm{Pt}(7)$ to $\mathrm{P}(1) 2.318(2), \mathrm{P}(2)$ $2.328(2), \mathrm{B}(2) 2.226(8), \mathrm{B}(3) 2.280(8), \mathrm{B}(8) 2.317(9)$ and $\mathrm{B}(11) 2.305(8)$; from $\mathrm{Ru}(9)$ to $\mathrm{B}(4) 2.251(8), \mathrm{B}(5) 2.236(8)$, $\mathrm{B}(8) 2.215(8)$, $\mathrm{B}(10)$ $2.303(8)$, and to $\mathrm{C}(2)-\mathrm{C}(7)$ in range 2.196(7) to 2.302(7): for compound 2: $\mathrm{Pt}(4)$ to $\mathrm{P}(1) 2.354(2), \mathrm{P}(2) 2.315(2), \mathrm{B}(2) 2.124(10), \mathrm{B}(7) 2.198(9)$, $\mathrm{B}(8) 2.269(10)$ and $_\mathrm{B}(11) 2.302(10)$; from $\mathrm{Ru}(1)$ to $\mathrm{B}(2) 2.168(9)$, $\mathrm{B}(3)$ short at $2.086(10)$, $\mathrm{B}(5) 2.254(10)$, $\mathrm{B}(6) 2.284(10)$, $\mathrm{B}(7)$ long at $2.604(9)$ and to $\mathrm{C}(1)-\mathrm{C}(6)$ exhibiting a larger range than for $\mathbf{1}$, viz. $2.207(8)$ to $2.370(8)$. In compound $\mathbf{1}$ the distances $\operatorname{Ru}(9)-\operatorname{Pt}(7)$ at $3.767(1)$ and $\mathrm{Ru}(9)-\mathrm{B}(11)$ at $3.537(8) \AA$ across the open face are clearly non-bonding. In compound $\mathbf{2}$ the equivalent distances $\operatorname{Ru}(1)-\operatorname{Pt}(4)$ at $2.964(1)$ and $\mathrm{Ru}(1)-\mathrm{B}(7)$ at $2.604(9) \AA$ indicate much more interaction, although they are at the higher end of ranges that are generally thought of as bonding; i.e. even with the sub-closo electron count the closo-type structure still exhibits some tendency to more open nido character (schematic II).

2. Single crystal X-ray diffraction analysis

Orange crystals of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtB}_{9} \mathrm{H}_{11} \mathrm{Ru}\left(\eta^{6}-\right.\right.$ ${ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}$)] (compound $\mathbf{1}$) were obtained by diffusion of hexane into a solution in dichloromethane, and dark purple crystals of $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2} \mathrm{PtB}_{9} \mathrm{H}_{9} \mathrm{Ru}\left(\eta^{6}-\right.\right.$ ${ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}$)] (compound 2) were obtained by diffusion of hexane into a solution in toluene.

2.1. Crystal data

Compound 1: $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{PtRu}, M=815.03$, monoclinic, $a=9.1991(6), b=14.3595(7), c=25.178$ (2) \AA, $\beta=94.197(8)^{\circ}, U=3317.0(4) \AA^{3}$, space group $\mathrm{P} 2_{1} / c$ (No. 14), $Z=4, D_{c}=1.632 \mathrm{Mg} \mathrm{m}^{3}, F(000)=1600$, $T=210 \mathrm{~K}$, crystal dimensions $0.38 \times 0.33 \times 0.27 \mathrm{~mm}$; 5971 reflections were measured (5830 unique, $R_{\text {int }}=$ 0.0854) on a Stoe STADI4 four-circle diffractometer in the range $3<2 \theta<50^{\circ}$, operating in the $\omega-\theta$ scan mode and using graphite-monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation ($\lambda=0.71073 \mathrm{~A}$). Compound 2: $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{~B}_{9} \mathrm{P}_{2} \mathrm{PtRu}$, $M=813.01, \quad$ monoclinic, $\quad a=10.2509(14), \quad b=$ 13.950(2), $\quad c=22.775(5) ~ \AA, \quad \beta=94.27(2)^{\circ}, \quad U=$ 3247.8(10) \AA^{3}, space group P_{1} / c (No. 14), $Z=4$, $D_{c}=1.663 \mathrm{Mg} \mathrm{m}^{3}, F(000)=1592, T=220 \mathrm{~K}$, crystal dimensions $0.42 \times 0.34 \times 0.23 \mathrm{~mm}$; 6083 reflections were measured as for compound 1 (5711 unique, $R_{\text {int }}=$ 0.0417). In each case three standard reflections measured every hour showed a negligible variation in intensity, and data were corrected for Lorentz and polarisation effects and an absorption correction was applied which was based on azimuthal psi-scans. Transmission factors were $0.0872-0.2669, \quad \mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)=4.781$ mm^{-1} for compound $\mathbf{1}$ and 0.7071 to $0.9865, \mu(\mathrm{Mo}-$ $\left.\mathrm{K}_{\alpha}\right)=4.883 \mathrm{~mm}^{-1}$ for compound $\mathbf{2}$.

2.2. Structure solution and refinement

Both compounds were solved and refined similarly. Platinum and ruthenium atoms were located using Patterson heavy-atom methods (SHELXS-86) [40], subsequent Fourier difference techniques located the remaining heavier atoms, and refinement (SHELXL-93) [41] was by full-matrix least-squares on F^{2} using all the unique data. All non-hydrogen atoms were assigned anisotropic displacement parameters. Phenyl rings were restrained to be flat and of overall $C_{2 \mathrm{v}}$ symmetry, with their hydrogen atoms included using a riding model with isotropic displacement parameters. Borane terminal hydrogen atoms were located via Fourier difference syntheses, and were assigned isotropic displacement parameters constrained at $1.2 U_{\text {eq }}$ of their parent boron atoms. All B-H distances in compound 1 were restrained to be $1.1 \AA$ (within an e.s.d of $0.03 \AA$). For compound 1 the weighting scheme was $w=$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0403 P)^{2}\right]$ where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 ;$
the final $w R\left(F^{2}\right)$ was 0.0917 , with a conventional $R(F) 0.0374$ based on 4400 observed reflections [with $I>2 \sigma(I)]$ (R factors defined in Ref. 32) for 394 parameters and 101 restraints, goodness of fit $=1.206$, maximum $\Delta / \sigma=-0.010$, maximum $\Delta p=1.408$ e \AA^{-3}. For compound 2 the weighting scheme was $w=$ $1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0254 P)^{2}+18.4728 P\right]$ where $P=\left(F_{\mathrm{o}}^{2}\right.$ $\left.+2 F_{\mathrm{c}}^{2}\right) / 3$; the final $w R\left(F^{2}\right)$ was 0.0975 , with a conventional $R(F) 0.0402$ based on 4093 observed reflections [with $I>2 \sigma(I)$] for 386 parameters and 73 restraints, goodness of fit $=1.011$, maximum $\Delta / \sigma=$ +0.014 , maximum $\Delta p=0.721 \mathrm{e}^{\AA^{-3}}$.

3. NMR data

NMR data for [7,7-($\left.\mathrm{PMe}_{2} \mathrm{~h}\right)_{2}-9-\left(\eta^{6}{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-$ $7,9-\mathrm{PtRuB}_{9} \mathrm{H}_{11}$] (compound 1) in CDCI_{3}, ordered as tentative assignment $\delta\left({ }^{11} \mathrm{~B}\right)\left(\right.$ rel. $\left.\mathrm{BF}_{3} \mathrm{OEt}_{2}\right)\left[\delta\left({ }^{1} \mathrm{H}\right)\right]$ for $\{\mathrm{BH}($ exo $)\}$ units, as follows; $\mathrm{BH}(8)+34.8[+5.08$, $\left.\left.J\left({ }^{195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right) 19 \mathrm{~Hz}\right)\right], \mathrm{BH}(6$ or 3$) \mathrm{ca} .+24[+4.82]$, $\mathrm{BH}(3$ or 6$) \mathrm{ca} .+24[+4.10], \mathrm{BH}(5)+13.6[+3.50]$, $\left.\mathrm{BH}(4)+1.1\left[+1.97, J\left({ }^{(195} \mathrm{Pt}-{ }^{1} \mathrm{H}\right) 16 \mathrm{~Hz}\right)\right], \mathrm{BH}(2)-0.8$ [+2.39], $\mathrm{BH}(11)-2.6[+2.48] . \mathrm{BH}(10)-5.6[+2.42]$ and $\mathrm{BH}(1)-24.6[+1.70]$, with $\delta\left({ }^{1} \mathrm{H}\right)(8,9)-12.24$ and $(10,11)-2.14$; additionally $\delta\left({ }^{1} \mathrm{H}\right)\left({ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ at +1.27 and +1.29 (doublets), +2.06 (singlet) +2.74 (septet) and +5.31 to +5.59 ppm (multiplets), and $\delta\left({ }^{1} \mathrm{H}\right)(\mathrm{P}$-methyl) at $+1.79,+1.69,+1.58$ and +1.50 ppm (all with doublet splittings ca. 9 Hz), and $\delta\left({ }^{31} \mathrm{P}\right.$) (rel. $\left.85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)+13.7\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 2676 \mathrm{~Hz}\right]$, $+11.9\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 2529 \mathrm{~Hz}\right],{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 29 \mathrm{~Hz}$. For $\left[1-\left(\eta^{6}{ }^{i s o}{ }^{i s} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-4,4-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-1,4-\right.$ RuPtB ${ }_{9} \mathrm{H}_{9}$] (compound 2) in CDCl_{3}, ordered as tentative assignment $\delta\left({ }^{11} \mathrm{~B}\right)\left(\right.$ rel. $\left.\mathrm{BF}_{3} \mathrm{OEt} 2\right)\left[\delta\left({ }^{1} \mathrm{H}\right)\right]$ for $\{\mathrm{BH}($ exo $)\}$ units as follows; $\mathrm{BH}(3$ or 2$)+95.9[+8.78]$, $\mathrm{BH}(2$ or 3$)+92.2[+10.25], \mathrm{BH}(8)+35.2[+4.90]$, $\mathrm{BH}(5$ or 6$) \mathrm{ca} .+8.5[+2.47], \mathrm{BH}(6$ or 5$) \mathrm{ca} .+8.5$ $[+2.60], \mathrm{BH}(10$ or 9$) \mathrm{ca} .+3.5[+3.48$, doublet splitting, 19 Hz$), \mathrm{BH}(9$ or 10$) \mathrm{ca} .+3.5[+3.86$, triplet structure, splitting 31 Hz$), \mathrm{BH}(11)+1.4[+2.24]$. and $\mathrm{BH}(4)-9.5 \quad[+0.47]$; additionally $\delta\left({ }^{1} \mathrm{H}\right)$ $\left.{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)$ at +1.33 (doublets) +2.41 (singlet) +3.37 (septet) and +5.18 to +5.52 ppm (multiplets), $\delta\left({ }^{1} \mathrm{H}\right)(\mathrm{P}-$ methyl $)$ at $+1.80,+1.76,+1.41$ and +1.29 ppm (all with doublet splittings ca. 9 Hz), and $\delta\left({ }^{31} \mathrm{P}\right.$) (rel. $\left.85 \% \mathrm{H}_{3} \mathrm{PO}_{4}\right)+0.4\left[{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 2822 \mathrm{~Hz}\right],-7.8$ [$\left.{ }^{1} J\left({ }^{195} \mathrm{Pt}-{ }^{31} \mathrm{P}\right) 2592 \mathrm{~Hz}\right],{ }^{2} J\left({ }^{31} \mathrm{P}-{ }^{31} \mathrm{P}\right) 29 \mathrm{~Hz}$.

4. Discussion

Yellow compound $\mathbf{1}$ is seen to be essentially of nido open eleven-vertex geometry \mathbf{I}, and has two bridging hydrogen atoms associated with the open face. It is a direct analogue of nido-structured $\left[7,7-\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-7-\right.$
$\mathrm{PtB}_{10} \mathrm{H}_{12}$] (compound 3) [42,43] with the neutral $\left\{\mathrm{Ru}\left(\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)\right\}$ unit being formally isolobal and isoelectronic with a neutral cluster $\{\mathrm{BH}\}$ fragment. A formal Wadian electron-count for compound 1 or compound 3 , with a contribution of two electrons from the $\left\{\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}$ vertex, would give 24 electrons, predicting $(2 n+2)$-electron closo geometry for the elevenvertex cluster system in each case, in apparent conflict with the observed geometries. This is because the platinum centre can be regarded in this compound as a square-planar sixteen-electron platinum(II) centre [9,14-17]. Although the $\left\{\mathrm{Pt}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}\right\}$ unit is equivalent to an anionic $\left\{\mathrm{BH}_{2}\right\}^{-}$unit in terms of cluster bonding, unlike $\left\{\mathrm{BH}_{2}\right\}^{-}$it does not have two electrons for cluster counting purposes in an endo terminal bond to hydrogen, hence the anomaly [9,14-17].

The situation with purple [1-($\left.\eta^{6}-{ }^{\text {iso }} \mathrm{PrC}_{6} H_{4} \mathrm{Me}\right)-4,4-$ $\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-1,4-\mathrm{RuPtB}_{9} \mathrm{H}_{9}$] (compound 2) appears somewhat more anomalous. Compared to compound 1, it lacks the two bridging hydrogen atoms, and the cluster now has an eleven-vertex closo-type geometry, as opposed to the nido geometry of compound $\mathbf{1}$. However, with two hydrogen atoms fewer, the formal Wadian electron count of compound $\mathbf{2}$ is not closo, but sub-closo at $2 n$-electron pileo. This latter might possibly be expected to be associated with a more compact structure than closo itself, for example as observed in the eleven-vertex 'isocloso' monometallaborane [1-(η^{6} $\left.{ }^{\text {iso }} \mathrm{PrC}_{6} \mathrm{H}_{4} \mathrm{Me}\right)-1-\mathrm{RuB}_{10} \mathrm{H}_{10}$] [20], also of formal pileo electron count. However, for compound 2 the $\mathrm{Ru}(1)-$ $\mathrm{Pt}_{\mathrm{o}}(4)$ and $\mathrm{Ru}(1)-\mathrm{B}(7)$ distances of 2.964(1) and 2.604(9) \AA respectively are in fact long, indicating an incomplete closure II from the nido geometry II, rather than a complete compact closure as shown in III.

This inhibition of complete closure could arise from a second characteristic of platinum(II) square-planar character, viz. a reluctance by the platinum to accept an additional electron pair from the cluster bonding scheme to give it a closed transition-element eighteen-electron shell.

5. Conclusion

The comparison of compounds $\mathbf{1}$ and $\mathbf{2}$ is in interesting contrast to the mutually isoelectronic pair consisting of neutral nido-shaped $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhSB}_{9} \mathrm{H}_{10}\right]$ (compound
4) and the closo-shaped anion $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{RhSB}_{9} \mathrm{H}_{10}\right]^{-}$ (species 5) [14-19], effectively duplicated by the neutral pair consisting of nido-shaped $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}_{2} \mathrm{PtCB}_{9}-\right.\right.$ $\left.\mathrm{H}_{11}\right]$ (compound 6) and closo-shaped $\left[\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)_{2}-\right.$ $\mathrm{PtC}_{2} \mathrm{~B}_{8} \mathrm{H}_{10}$] (compound 7) [36-38,44]. All the species $4,5,6$ and 7 have formal closo electron counts, and so here the notional $\mathbf{4} \rightarrow \mathbf{5}$ and $\mathbf{6 \rightarrow 7}$ conversions are from Wade-anomalous nido to Wade-consistent closo. These two geometric nido to closo transitions are associated with the loss of a proton only and no electrons. By contrast, the present (notional) $\mathbf{1} \boldsymbol{\rightarrow 2}$ conversion of the \{RuPt\} species is from Wade-anomalous nido to perhaps a somewhat more Wade-anomalous, partially open, closo by the loss of two electrons as hydrogen atoms. Compounds 1 and 2 obviously an interesting pair of compounds, and we currently try to extend these studies to additional eleven-vertex bimetalla-B-frame systems.

Acknowledgements

We thank the EPSRC (UK) for support.

References

[1] K. Wade, Chem. Commun. (1971) 792.
[2] K. Wade, Adv. Inorg. Chem. Radiochem. 18 (1976) 1.
[3] J. Casanova (Ed.), The Borane-Carborane-Carbocation Continuum, Wiley, New York, 1997, in preparation.
[4] R.E. Williams, Inorg. Chem. 10 (1971) 210.
[5] R.E. Williams, Adv. Inorg. Chem. Radiochem. 18 (1976) 64.
[6] W.R. Pretzer, R.W. Rudolph, Inorg. Chem. 11 (1972) 1974.
[7] R.W. Rudolph, Acc. Chem. Res. 9 (1976) 446.
[8] D.M.P. Mingos, Nature Phys. Sci. 236 (1972) 99.
[9] J.D. Kennedy, B. Štíbr, in: G.W. Kabalka (Ed.), Current Topics of Boron Chemistry, Royal Society of Chemistry, Cambridge, 1994, pp. 285-292.
[10] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, P. MacKinnon, J. Chem. Soc., Chem. Commun. (1987) 817.
[11] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Chem Commun. (1987) 1650.
[12] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, Organometallics 6 (1987) 2254.
[13] K. Nestor, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, J. Plesek, B. Stibr, M. Thomton-Pett, Inorg. Chem. 28 (1989) 2219.
[14] J.D. Kennedy, Main Group Met. Chem. 12 (1989) 149.
[15] G. Ferguson, M.C. Jennings, A.J. Lough, S. Coughlan, T.R. Spalding, J.D. Kennedy, X.L.R. Fontaine, B. Štíbr, J. Chem. Soc., Chem Commun. (1990) 891.
[16] R. Macias, J. Holub, W. Clegg, M. Thornton-Peft, B. Štíbr, J.D. Kennedy, J. Chem. Soc., Dalton Trans. (1997) 149.
[17] M.P. Murphy, T.R. Spalding, C. Cowey, J.D. Kennedy, M. Thornton-Pett, J. Holub, J. Organomet. Chem., 1997, submitted (for the K. Wade volume).
[18] K.J. Adams, T.D. McGrath, A.J. Welch, Acta Crystallogr., Sect. C C51 (1995) 401.
[19] R. Ll. Thomas, A.J. Welch, J. Chem. Soc., Dalton Trans. (1997) 631, and references cited therein.
[20] M. Bown, X.L.R. Fontaine, N.N. Greenwood, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. (1990) 3039.
[21] J. Bould, J.E. Crook, N.N. Greenwood, J.D. Kennedy, W.S. McDonald, J. Chem. Soc., Chem Commun. (1982) 346.
[22] J. Bould, N.N. Greenwood, J.D. Kennedy, W.S. McDonald, J. Chem. Soc., Chem Commun. (1982) 465.
[23] J.E. Crook, M. Elrington, N.N. Greenwood, J.D. Kennedy, J.D. Woollins, Polyhedron 3 (1984) 901.
[24] K.P. Callahan, W.J. Evans, F.Y. Lo, C.E. Strouse, M.F. Hawthorne, J. Am. Chem. Soc. 97 (1975) 296.
[25] E.K. Nishimura, J. Chem. Soc., Chem. Commun. (1978) 858.
[26] J.E. Crook, N.N. Greenwood, J.D. Kennedy, W.S. McDonald, J. Chem. Soc., Chem Commun. (1981) 993.
[27] D.D. Devore, S.J.B. Henderson, J.A.K. Howard, F.G.A. Stone, J. Organomet. Chem. 358 (1988) C6.
[28] J. Bould, N.N. Greenwood, J.D. Kennedy, J. Chem. Soc., Dalton Trans. (1990) 1451.
[29] J.C. Jeffery, P.A. Jellis, F.G.A. Stone, Inorg. Chem. 32 (1993) 3382.
[30] J. Bould, J.D. Kennedy, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. (1992) 563.
[31] B. Štíbr, J.D. Kennedy, E. Drdáková, M. Thornton-Pett, J. Chem. Soc., Dalton Trans. (1994) 229.
[32] R.T. Baker, Inorg. Chem. 25 (1986) 109.
[33] J.D. Kennedy, Inorg. Chem. 25 (1986) 111.
[34] R.L. Johnston, D.M.P. Mingos, Inorg. Chem. 25 (1986) 1661.
[35] R.L. Johnston, D.M.P. Mingos, P. Sherwood, New J. Chem. 15 (1991) 831.
[36] J.D. Kennedy, B. Štíbr, M. Thornton-Peft, T. Jelínek, Inorg. Chem. 30 (1991) 4481.
[37] J.D. Kennedy, K. Nestor, B. Štíbr, M. Thornton-Pett, G.S.A. Zammitt, J. Organomet. Chem. 477 (1992) C1.
[38] J.D. Kennedy, B. Štíbr, T. Jelínek, X.L.R. Fontaine, M. Thorn-ton-Pett, Collect. Czech. Chem. Commun. 58 (1993) 2090.
[39] P. McArdle, J. Appl. Crystallogr. 28 (1995) 65.
[40] G.M. Sheldrick, Acta Crystallogr., Sect. A 46 (1990) 467.
[41] G.M. Sheldrick, Program for crystal structure refinement, University of Göttingen, 1993.
[42] J.D. Kennedy, B. Wrackmeyer, J. Magn. Reson. 38 (1980) 529.
[43] S.K. Boocock, N.N. Greenwood, J.D. Kennedy, W.S. McDonald, J. Staves, J. Chem. Soc., Dalton Trans. (1981) 2573.
[44] B. Štíbr, T. Jelínek, J.D. Kennedy, X.L.R. Fontaine, M. Thorn-ton-Pett, J. Chem. Soc., Dalton Trans. (1993) 1261.

[^0]: * Corresponding author.
 ${ }^{1}$ We are pleased to be able to dedicate this paper to Ken Wade, whose Rules have been instrumental and inspirational in the development of boron-containing cluster chemistry over the quarter century since their original formulation.
 ${ }_{3}^{2}$ See also K. Wade, contribution in Ref. [3].
 ${ }_{4}^{3}$ See also R.E. Williams, contribution in Ref. [3].
 ${ }^{4}$ See references therein. See also J.D. Kennedy, contribution to [3].

